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For # # (0, 1�2] we construct n-dimensional polynomial subspaces Yn of C[&1, 1]
and L1(&1, 1) such that the relative projection constants *(Yn , C[&1, 1]) and
*(Yn , L1(&1, 1)) grow as n#. These subspaces are spanned by Chebyshev polyno-
mials of the first and second kind, respectively. The spaces L1

w(:, ;) where w:, ; is the
weight function of the Jacobi polynomials and (:, ;) # [(&1�2, &1�2), (&1�2, 0),
(0, &1�2)] are also studied. � 1999 Academic Press

1. INTRODUCTION AND MAIN RESULT

The operator norms of the Fourier projections from one of the spaces
C2? and L1

2? of 2?-periodic functions onto an n-dimensional subspace of the
form Yn=span[eikj x; 1� j�n] with integers k1<k2< } } } <kn can grow
like n# as n � � for any # # (0, 1�2). This was shown by Shekhtman [10]
by explicit construction of sequences [kj].

In view of the minimality of the Fourier projections, *(Yn , C2?) and
*(Yn , L1

2?) also grow as n# with the usual definition

*(Y, X) :=inf[&P&[X] ; P is a continuous linear projection from X onto Y]
(1)

of the relative projection constant of a linear subspace Y in a Banach space
X with norm & }&X and operator norm & }&[X] .

The corresponding question for the spaces C[&1, 1] and L1(&1, 1),
which is the subject of the present paper, depends in an essential way on the
choice of functions which span Yn . It is not useful to choose Yn=span[xkj;
1� j�n] since for a sufficiently sparse sequence [kj], *(Yn , C[&1, ]) and
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*(Yn , L1(&1, 1)) may be bounded as n � �; see Newman and Shekhtman
[9, Theorem 1] and the present authors [7, Theorem 2], respectively.

In fact, the Shekhtman construction in [10], which relies on the inter-
play between lacunary and dense segments in the sequence [kj], just
increases the influence of the lacunary segments in order to achieve the
larger rates.

Instead of a span of monomials, or a span of Legendre polynomials, our
choice will be

Yn :=span[P:, ;
kj

(x); 1� j�n]

with (:, ;)=(1�2, 1�2) in case of L1(&1, 1) and (:, ;)=(&1�2, &1�2) in
case of C[&1, 1]. Here P:, ;

m (x) denotes the Jacobi polynomials normalized
by P:, ;

m (1)=( m+:
m ). This makes it possible on the one hand to employ a

special Berman�Marcinkiewicz type identity (9) which draws a connection
between four L1-spaces with particular Jacobi weights w:, ;(x)=
(1&x): (1+x); and the Jacobi partial sum operators S 2:+1�2, 2;+1�2

n , and
on the other, to show that the sparse sequences [kj] furnish the larger
operator norms again (Lemmas 3 and 5). As a consequence, the essentials
of Shekhtman's construction remain applicable in the proof of our main
result.

Theorem. Let X(&1, 1) be one of the spaces C[&1, 1] or L1
w(:, ;) with

(:, ;) # [(0, 0), (&1�2, &1�2), (&1�2, 0), (0, &1�2)]. For each # # (0, 1�2)
there exists a set of integers 0�k1< } } } <kn and a subspace Yn :=
span[P2:+1�2, 2;+1�2

kj
(x); 1� j�n] such that

C1n#�*(Yn , X(&1, 1))�C2n# (2)

for certain constants C1 , C2>0 that do not depend on n.

Here L1
w(:, ;) denotes the space of complex valued functions f on (&1, 1)

with & f &L1
w (:, ;)

:=�1
&1 | f (x)| w:, ;(x) dx<�.

The paper concludes with an example (Remark 10) showing that the
mere comparison of the growth rate of two sequences [kj] does not allow
one to predict which of the two projection constants increases faster.

2. PROOFS

A set of the form

I=[kj # N0 ; k1<k2< } } } , j # N] (3)
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will be called an index set, and I is called lacunary if k1�1 and
kj+1 �kj�r>1, j # N.

Definition 1. Let I be an index set. For any m # N define

num(m) :=*[(i, j ) # N_N; m=ki+kj or m=|k i&kj |, ki , kj # I],

where *M denotes the cardinality of a set M. The set I is called thin if
there exists a constant C such that num(m)�C for all m # N.

Proposition 2. A lacunary index set is thin. The converse is not valid.

Proof. The number num(m) of representations of a given m # N as a
sum or a difference of elements of I does not exceed twice the number
of representations m=ki+kj with i� j or m=k&&k+ with &�+. If
m=ki+kj and i� j, then 2ki�m�ki . Thus there can be at most _ such
representations, where _ is the number of elements ki # I with m�2�ki�m.
In view of the lacunarity of I we have 2�r_&1, i.e., _�[1+log 2�log r],
where [a] denotes the integer part of a. Similarly, $�[2&log(r&1)�
log r] is obtained for the number $ of representations m=k&&k+ with
&�+, and it follows that mum(m)�2(_+$)=: C.

As to the converse, a thin index set with kj� j 4, j # N, is clearly not
lacunary. To construct such a set we start with a fixed & # N and numbers
k1<k2< } } } <k& such that kj� j 4, 1� j�&. The set

M& :=[m # N; m=ki+kj or m=|ki&kj |, 1�i, j�&]

of all sums and differences of pairs of kj satisfies *M&�&(&+1), and each
element of M& has at most C different representations for some constant
C # N. If the next index k&+1 can be chosen such that

k&+1 # [&4+1, ..., (&+1)4]=: A&+1 and k&+1\kj � M& , 1� j�&, (4)

the numbers of representations for elements of M&+1 remains bounded by
C. Such a choice is possible since

k&+1 � [m\kj ; m # M& , 1� j�&]=: B&+1 ,

i.e., there exists *A&+1&*B&+1>2&3 possibilities.
Continuing this process, one obtains a sequence [k j]j # N such that each

m # �j�& Mj has no more than C different representations as sums or dif-
ferences of previous elements. Any m # N0"� j�& M j has no representation
at all, and the proof is complete. K
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For an index set of type (3) let In=[kj # I; 1� j�n] and denote by S :, ;
In

the Jacobi partial sum operator with respect to the set [P:, ;
kj

(x); k j # In].

Lemma 3. Let (:, ;) # [(0, 0), (&1�2, &1�2), (&1�2, 0), (0, &1�2)],
and let I be a thin index set. There exists a constant C>0, independent of
n, such that

&S 2:+1�2, 2;+1�2
In

&[L1
w (:, ;)]

�C - n. (5)

Proof. Denoting the orthonormal Jacobi polynomials by P� 2:+1�2, 2;+1�2
m (x),

one has

&S 2:+1�2, 2;+1�2
In

&[L1
w (:, ;)]

= ess sup
t # (&1, 1)

|
1

&1
|K :, ;

In
(x, t)| w&1�2, &1�2(x) dx,

K :, ;
In

(x, t)= :
n

j=1

P� 2:+1�2, 2;+1�2
kj

(x) w:+1�2, ;+1�2(x)

_P� 2:+1�2, 2;+1�2
kj

(t) w:+1�2, ;+1�2(t).

Following a pattern in DeVore and Lorentz [2, p. 284], the function
num(m) of Definition 1 is brought into play via the forth power of the
kernel. Ho� lder's inequality with p=3 yields

ess sup
t # (&1, 1)

&(K :, ;
In

( } , t))2&L1
w (&1�2, &1�2)

�[ ess sup
t # (&1, 1)

&(K :, ;
In

( } , t))4&L1
w (&1�2, &1�2)

]1�3 &S 2:+1�2, 2;+1�2
In

&2�3
[L1

w (:, ;)
] . (6)

The left hand side is

ess sup
t # (&1, 1) } :

n

i=1

(P� 2:+1�2, 2;+1�2
ki

(t))2 w2:+1, 2;+1(t)}
�

1
? |

1

&1 }� } } } } w&1�2, &1�2(t) dt=
n
?

.

To estimate the right hand side, let (:, ;)=(0, 0) first. Using the represen-
tation

P� 1�2, 1�2
m (x)=�2

?
sin((m+1) arc cos x)(1&x2)&1�2, (7)
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one obtains

ess sup
t # (&1, 1)

&(K 0, 0
In

( } , t))4&L1
w (&1�2, &1�2)

=
1
?4 max

� # [0, ?] |
?

0 _4 :
n

i, j=1

sin((k i+1) �) sin((kj+1) �)

_sin((ki+1) .) sin((kj+1) .)&
2

d.

�
1
?4 :

n

i, j, l, m=1

[ max
� # [0, ?]

|cos((ki&kj) �)&cos((ki+kj+2) �)|

_|cos((kl&km) �)&cos((k l+km+2) �)|]

_{} |
?

0
cos((ki&kj) .) cos((kl&km) .) d. }

+ } |
?

0
cos((ki&k j) .) cos((kl+km+2) .) d. }

+ } |
?

0
cos((ki+k j+2) .) cos((k l&km) .) d. }

+ } |
?

0
cos((ki+k j+2) .) cos((k l+km+2) .) d. }=

�
4
?4 \:

1

+:
2

+:
3

+:
4
+ ,

say, where the term in square brackets has been estimated by 4. Since I is
thin, it follows that

:
1

= :
n

i, j, l, m=1
ki&kj=kl&km=0

?+ :
n

i, j, l, m=1
ki&kj=kl&km{0

?
2

�?n2+
?
2

:
n

i, j=1

num(k i&kj)�C1 n2,

and similarly �i�Ci n2, 2�i�4. Hence

ess sup
t # (&1, 1)

&(K 0, 0
In

( } , t))4&L1
w (&1�2, &1�2)

�C5n2.
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The cases (:, ;)=(&1�2, &1�2) and (&1�2, 0) are treated analogously,
using the representations

P� &1�2, &1�2
m (x)={- 2�? cos(m arc cos x),

1�- ?,
m # N

m=0,

P� &1�2, 1�2
m (x)=- 2�? cos((m+1�2) arc cos x)(1+x)&1�2.

The case (:, ;)=(0, &1�2) follows by symmetry.
Finally, (6) yields

&S 2:+1�2, 2;+1�2
In

&[L1
w (:, ;)]

�_ n�?
(C5n2)1�3&

3�2

. K

Definition 4. For (:, ;) # [(0, 0), (&1�2, &1�2), (&1�2, 0), (0, &1�2)]
the generalized translation operator {:, ;

t : L1
w(:, ;) � L1

w(:, ;) is defined by

({:, ;
t f )(x) :=({t ( f ( } ) w:+1�2, ;+1�2( } )))(x) w&:&1�2, &;&1�2(x), (8)

({t g)(x) := 1
2[ g(cos(.(x, t))) a(.(x, t))+ g(cos(�(x, t))) a(�(x, t))]

= 1
2[ g(xt+- 1&x2

- 1&t2) a(.(x, t))

+ g(xt&- 1&x2
- 1&t2) a(�(x, t))] (x, t # [&1, 1])

with

a(%) :={
sign(sin %),
1
sign(cos(%�2)),
sign(sin(%�2)),

(:, ;)=(0, 0)
(:, ;)=(&1�2, &1�2)
(:, ;)=(&1�2, 0)
(:, ;)=(0, &1�2)

and

.(x, t) :=arc cos x+arc cos t, �(x, t) :=arc cos x&arc cos t.

Lemma 5. Let (:, ;) # [(0, 0), (&1�2, &1�2), (&1�2, 0), (0, &1�2)],
and Yn :=span[P2:+1�2, 2;+1�2

kj
(x); k j # In]. For an arbitrary projection

operator Pln
: L1

w(:, ;) � Yn there hold the Berman�Marcinkiewicz type
identity

2
? |

1

&1
({:, ;

t PIn {:, ;
t f )(x)

dt

- 1&t2

={(S &1�2, &1�2
In

f )(x)+(S &1�2, &1�2
0 f )(x),

(S 2:+1�2, 2;+1�2
In

f )(x),
(:, ;)=(&1�2, &1�2) and 0 # In

otherwise (9)
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for f # L1
w(:, ;) and the inequality

&S 2:+1�2, 2;+1�2
In

&[L1
w (:, ;)]

�*(Yn , L1
w(:, ;))

�{
1
2 &S&1�2, &1�2

In
&[L1

w (&1�2, &1�2)]
& 1

2 ,
1
2 &S 2:+1�2, 2;+1�2

In
&[L1

w (:, ;)]
,

(:, ;)=(&1�2, &1�2) and 0 # In

otherwise. (10)

If I is a thin index set, it follows that

*(Yn , L1
w(:, ;))�C - n. (11)

By the Theorem of Kadec and Snobar [8, (5)], the inverse inequality is
valid for arbitrary index sets with constant C=1.

Outline of Proof. The proof is similar to [5, 6], except for the more
general index sets admitted here. To obtain (9) one proceeds like in the tri-
gonometric case [2, p. 282], replacing the product formula Tt (eik } )(x)=
eik(x+t)=eikxeikt for the usual translation operator Tt by

({0, 0
t P� 1�2, 1�2

j ( } ))(x)=�?
2

P� &1�2, &1�2
j+1 (t) P� 1�2, 1�2

j (x) ( j # N0),

in case (:, ;)=(0, 0), where {0, 0
t is given by Definition 4, and observing

that it is not necessary that the two factors on the right belong to the same
set of orthogonal polynomials. In fact, by means of two isometric iso-
morphisms the computations are finally done in a trigonometric setting,
i.e., in terms of projections from the space L� 1

2? of even integrable and
2?-periodic functions onto span[sin((k+1) arc cos x); 0�k�n]. Similar
product formulas exist for (:, ;) # [(&1�2, &1�2), (&1�2, 0), (0, &1�2)].

As to (10), the upper estimate is trivial. The lower estimate follows by
(9), the relation

&{:, ;
t &[L1

w (:; ;)]
�1, (12)

and elementary estimations of the operator norms. This approach is based
on the fact that just in the four cases treated the Jacobi polynomials admit
trigonometric representations like (7) and that in space L1

w(:, ;) the norms
of the partial sums S 2:+1�2, 2;+1�2

n increase more slowly than those of the
Fourier�Jacobi partial sums S :, ;

n [3, 4]. K

Concerning dense index sets one has the following
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Lemma 6. Let (:, ;) # [(0, 0), (&1�2, &1�2), (&1�2, 0), (0, &1�2)] and
let I (m)

n =[m+1, m+2, ..., m+n] for some n # N0 . There exists a constant
C>0, independent of m and n, such that

&S 2:+1�2, 2;+1�2
In

(m) &[L1
w (:, ;)]

�C log n (n # N, n�2). (13)

Proof. In case (:, ;)=(0, 0), one has, denoting by Dn the Dirichlet
kernel,

&S 1�2, 1�2
In

(m) &[L1(&1, 1)]=
1
?

ess sup
� # (0, ?) " :

n

j=1

sin((m+ j+1) �) sin((m+ j+1) } )"L1
2?

�
1

2?
&Dm+n+1&Dm+1&L1

2?

�
1

2? "
1

sin( } �2)
sin \2m+3

2
} + [1&cos(n } )]"L1

2?

+
1

2? "
1

sin( } �2)
cos \2m+3

2
} + sin(n } )"L1

2?

�
1

2? "
1&cos(n } )

sin( } �2) "L1
2?

+
1

2? "
sin(n } )
sin( } �2)"L1

2?

=
1
? "

sin2((n�2) } )
sin( } �2) "L1

2?

+
1
? "

sin((n�2) } ) cos((n�2) } )
sin( } �2) "L1

2?

�
2
? "

sin((n�2) } )
sin( } �2) "L1

2?

,

and the proof is completed as in [1, Proposition 1.2.3]. The other three
cases can be treated similarly. K

Remark 7. By [7, Theorem 1], the inverse of (13) is valid for arbitrary
index sets. These inequalities can be transferred to relative projection
constants as in Lemma 5.

Proof of the Theorem. In case X(&1, 1)=L1
w(:, ;) , the construction of

[10] remains applicable by using Lemmas 3, 5, and 6. We outline the main
steps. By Lemma 5 it suffices to show that the S 2:+1�2, 2;+1�2

In
satisfy the

same estimates. We build an index set I=[kj # N0 ; k1<k2< } } } ] as
follows. Given # # (0, 1�2], set a :=3�(2#)&1, thus a>2. Choose a
lacunary index set L=[* j # N; *1<*2< } } } ] satisfying *m+1&*m>[na]
(m�n). As a first step, take k1 :=*1 from L and k2 :=k1+1.

In step 2, let the following 22 indices come from L, thus

k3 :=*1+1 #*2 , k4 :=*1+2 #*3 , ..., k6 :=*1+4 #*5 ,
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and continue with [2a] ``arithmetic indices'':

k7 :=*5+1, k8 :=*5+2, ..., k6+[2a] :=*5+[2a].

Step j consists in choosing the next j2 entries from L, thus

*&+1 , *&+2 , ..., *&+ j2 (&=&( j )),

and continuing with [ ja] ``arithmetic entries'':

*&+ j2+1, *&+ j2+2, ..., *&+ j2+[ ja].

Let

I= .
j # N

(Lj _ Aj)

denote the index set obtained, where Lj :=[*&( j )+1 , *&( j )+2 , ..., *&( j )+ j2] are
the lacunary parts and Aj :=[*&( j )+ j2+1, *&( j )+ j2+2, ..., *&( j )+ j2+[ ja]]
the arithmetic ones. By construction we have

*Lj= j2 and *Aj=[ ja] ( j # N), (14)

and it can be shown, given n # N and supposing that kn # I was obtained
during the (M+1)st step, that there exist constants C1 , C2 such that
C1M�n1�(a+1)�C2M. Define L (n)

M+1 /LM+1 and A(n)
M+1 /AM+1 by

In=[k1 , k2 , ..., kn]= .
M

j=1

(Lj _ A j) _ L (n)
M+1 _ A (n)

M+1 .

Then (14) implies

*L (n)
M+1�(M+1)2 and *A (n)

M+1�[(M+1)a]. (15)

The proof proceeds by observing that the Jacobi partial sums
S 2:+1�2, 2;+1�2

�
M
j=1

Lj _ L(n)
M+1

, S 2:+1�2, 2;+1�2
Aj

, 1� j�M, and S 2:+1�2, 2;+1�2

A(n)
M+1

are pairwise

orthogonal, so that the following decomposition holds

S 2:+1�2, 2;+1�2
In

=S 2:+1�2, 2;+1�2

�
M
j=1

Lj _ L(n)
M+1

+ :
M

j=1

S 2:+1�2, 2;+1�2
Aj

+S 2:+1�2, 2;+1�2

A(n)
M+1

:=_1+_2+_3 ,

say, and carefully estimating the norm of the latter sum from above and
below. An upper bound is obtained by using Lemma 6 for Fourier�Jacobi
partial sums on arithmetic sections, so that

&S 2:+1�2, 2;+1�2
Aj

&[L1
w (:, ;)]

�C log(*Aj),
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and hence

&_2&+&_3&�C :
M

j=1

log[ j:]�C(M+1) log(M+1),

and on the other hand, by (15), (14), and the Kadec�Snobar theorem,

&_1&�C �*\.
M

j=1

L j _ L (n)
M+1+�C � :

M+1

j=1

j2�CM 3�2.

Hence the term _1 , which represents the sparse sections of the index set,
supersedes _2 and _3 . By the properties of a, M3�2 behaves like n#. The
lower bound is obtained similarly, using Lemma 3.

In case X(&1, 1)=C[&1, 1], the assertion is an immediate consequence
of the case (:, ;)=(&1�2, &1�2) and part (c) of the following.

Lemma 8. Let Yn :=span[P&1�2, &1�2
kj

(x); kj # In], n # N.

(a) &S &1�2, &1�2
In

&[C[&1, 1]]�*(Yn , C[&1, 1])

�{
1
2 &S&1�2, &1�2&[C[&1, 1]]& 1

2 ,
1
2 &S &1�2, &1�2

In
&[C[&1, 1]] ,

0 # In

0 � In ,

(b) &S &1�2, &1�2
In

&[C[&1, 1]]=&S &1�2, &1�2
In

&[L1
w (&1�2, &1�2)]

,

(c) There exist constants C1 , C2>0 such that for each n # N

C1*(Yn , C[&1, 1])�*(Yn , L1
w(&1�2, &1�2))�C2*(Yn , C[&1, 1]).

Proof. If L1
w(&1�2, &1�2) is replaced by C[&1, 1] in Lemma 5, the Berman�

Marcinkiewicz type identity of (9) holds for arbitrary bounded linear
projections PIn

: C[&1, 1] � Yn , and the bound &{&1�2, &1�2
t &[C[&1, 1]]�1

for the Chebyshev translation operator {&1�2, &1�2
t yields (a) (cf. (10)). Parts

(b) and (c) are obvious. K

Remark 9. The construction in [10]��and thus the theorem��is also
valid for #=1�2 and furnishes an example of a non-thin index set with
property (11).

Remark 10. We conclude with an example showing that increasing the
growth rate of the kj in (3) does not necessarily result in an acceleration
of the growth of *(Yn , X(&1, 1)) in (2).

By Proposition 2 and Lemma 5, a lacunary index set of the form
[kj :=2 j; j # N] leads to a growth rate - n. On the other hand, as in [10],
choosing a=5 there, an index set I$=[k$j # N; k$1<k$2< } } } ] can be
constructed which leads to a growth rate n1�4. Proceeding as in [10] and
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choosing *j :=j j 2
which satisfies the hypothesis [10, (5)], one obtains an

index set M#I$ with

lim inf
j � �

k$j
k j

=+�.
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